Location PD 与 Effective PD
定义:
- Location PD:实例所属的电压域
- Effective PD:给实例signal pin和boundary port供电的电压域
如何推出来location PD和effective PD
- location PD:数字版图中实例布局的位置
- effective PD:
- instance term:从liberty和UPF GNC
- Design boundry ports:Derive from UPF setting
- UPF2.0中,所有boundry ports被UPF中默认定义的电压域驱动
- UPF2.1中,所有boundry ports被未知电压域驱动
- 使用以下命令定义UPF中boundary ports的effPD
set_port_attributes -ports -driver_supply -receiver_supply
是一个UPF命令,用于为电源域端口分配特定的功率相关信息,如钳位电平、驱动电源和接收电源- ports port_list:指定要设置属性的端口列表,可以使用通配符或正则表达式。
- driver_supply supply_net:指定端口的驱动电源电网,用于为端口提供输出电压。
- receiver_supply supply_net:指定端口的接收电源电网,用于为端口提供输入电压。
-
clamp_value {0 1 Z X}:指定端口的钳位电平,用于在端口所属的电源域关闭时控制端口的输出值。

Liberty

location PD & effective PD derivation
-
实例信号引脚 effPD 确定流程
- 从实例库中找到 related_power_pin/related_ground_pin
- 从 UPF 中找到连接到 related_power_pin/related_ground_pin 的supply set
- 找到绑定supply set的power domain
对于标准单元instance,输入输出信号的effPD都是等于location PD的。
Domain Coverage
Domain Coverage Relationship
- Cover:如果PD1到PD2之间不需要插入任何低功耗单元,则PD1 cover PD2 (PD1 >= PD2)
- PD1 off >= PD2 off (PD1关断时,PD2也关断)
- PD2 on >= PD1 on (PD2开启时,PD1也开启)
- VDD1(t) >= VDD2(t) (PD1的电压高于PD2,否则需要插入level shifter)
- VSS1(t) <= VSS2(t)
- Equivalent:如果PD1 cover PD2 并且 PD2 cover PD1,则PD1和PD2是等效的
- PD1 到 PD2 之间不需要插入任何低功耗单元,反之亦然
- PD1 到 PD2 可以用regular buffer,反之亦然
- 如果必要可以使用来自等效电源域的power net,比如feedthrough
- Independent:如果PD1和PD2互相不cover
- PD1 和 PD2 之间需要插入低功耗单元
Domain Coverage Example

Domain Coverage Example
- PDA = PDC
- PDB > PDA = PDC
- PDD > PDA = PDC
- PDD and PDB are independent
Domain Based Solution

Domain Based Solution Example 1
- PD_Top的primary supply set是SS_VDD_Top_VSS,PD_Block的primary supply set是SS_VDD_Block_VSS,其中PM2下PD_Top是shut off的,PD_Block是cover PD_Top的

Domain Based Solution Example 2
- PD_Top是cover PD_Block1和PD_Block2
- Buffer的location PD是PD_Top
- Driver的effective PD是PD_Block1,Receiver的effective PD是PD_Block2
- Domain Coverage Analysis
- 如果 Driver的$effPD_{driver} >= locPD_{buffer} >= effPD_{receiver}$,则可以使用Regular Buffer,否则需要使用Always on buffer,因此图中需要使用Always on buffer